3.50 \(\int \frac {\log (\frac {\sqrt {1-a x}}{\sqrt {1+a x}})}{1-a^2 x^2} \, dx\)

Optimal. Leaf size=30 \[ -\frac {\log ^2\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 a} \]

[Out]

-1/2*ln((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/a

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {2505} \[ -\frac {\log ^2\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Int[Log[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/(1 - a^2*x^2),x]

[Out]

-Log[Sqrt[1 - a*x]/Sqrt[1 + a*x]]^2/(2*a)

Rule 2505

Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(u_), x_Symbol] :> Wi
th[{h = Simplify[u*(a + b*x)*(c + d*x)]}, Simp[(h*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s + 1))/(p*r*(s + 1)*(
b*c - a*d)), x] /; FreeQ[h, x]] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q,
 0] && NeQ[s, -1]

Rubi steps

\begin {align*} \int \frac {\log \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx &=-\frac {\log ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 30, normalized size = 1.00 \[ -\frac {\log ^2\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 a} \]

Antiderivative was successfully verified.

[In]

Integrate[Log[Sqrt[1 - a*x]/Sqrt[1 + a*x]]/(1 - a^2*x^2),x]

[Out]

-1/2*Log[Sqrt[1 - a*x]/Sqrt[1 + a*x]]^2/a

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 24, normalized size = 0.80 \[ -\frac {\log \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )^{2}}{2 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="fricas")

[Out]

-1/2*log(sqrt(-a*x + 1)/sqrt(a*x + 1))^2/a

________________________________________________________________________________________

giac [B]  time = 0.28, size = 58, normalized size = 1.93 \[ \frac {1}{4} \, {\left (\frac {\log \left (a x + 1\right )}{a} - \frac {\log \left (a x - 1\right )}{a}\right )} \log \left (-a x + 1\right ) - \frac {\log \left (a x + 1\right )^{2}}{8 \, a} + \frac {\log \left (a x - 1\right )^{2}}{8 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="giac")

[Out]

1/4*(log(a*x + 1)/a - log(a*x - 1)/a)*log(-a*x + 1) - 1/8*log(a*x + 1)^2/a + 1/8*log(a*x - 1)^2/a

________________________________________________________________________________________

maple [F]  time = 0.32, size = 0, normalized size = 0.00 \[ \int \frac {\ln \left (\frac {\sqrt {-a x +1}}{\sqrt {a x +1}}\right )}{-a^{2} x^{2}+1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x)

[Out]

int(ln((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x)

________________________________________________________________________________________

maxima [B]  time = 2.53, size = 83, normalized size = 2.77 \[ \frac {1}{2} \, {\left (\frac {\log \left (a x + 1\right )}{a} - \frac {\log \left (a x - 1\right )}{a}\right )} \log \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right ) + \frac {\log \left (a x - 1\right )^{2}}{8 \, a} + \frac {\log \left (a x + 1\right )^{2} - 2 \, \log \left (a x + 1\right ) \log \left (a x - 1\right )}{8 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log((-a*x+1)^(1/2)/(a*x+1)^(1/2))/(-a^2*x^2+1),x, algorithm="maxima")

[Out]

1/2*(log(a*x + 1)/a - log(a*x - 1)/a)*log(sqrt(-a*x + 1)/sqrt(a*x + 1)) + 1/8*log(a*x - 1)^2/a + 1/8*(log(a*x
+ 1)^2 - 2*log(a*x + 1)*log(a*x - 1))/a

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ -\int \frac {\ln \left (\frac {\sqrt {1-a\,x}}{\sqrt {a\,x+1}}\right )}{a^2\,x^2-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-log((1 - a*x)^(1/2)/(a*x + 1)^(1/2))/(a^2*x^2 - 1),x)

[Out]

-int(log((1 - a*x)^(1/2)/(a*x + 1)^(1/2))/(a^2*x^2 - 1), x)

________________________________________________________________________________________

sympy [B]  time = 6.28, size = 65, normalized size = 2.17 \[ - \frac {\operatorname {atan}^{2}{\left (\frac {x}{\sqrt {- \frac {1}{a^{2}}}} \right )}}{2 a} - \frac {\log {\left (\frac {\sqrt {- a x + 1}}{\sqrt {a x + 1}} \right )} \operatorname {atan}{\left (\frac {x}{\sqrt {- \frac {1}{a^{2}}}} \right )}}{a^{2} \sqrt {- \frac {1}{a^{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln((-a*x+1)**(1/2)/(a*x+1)**(1/2))/(-a**2*x**2+1),x)

[Out]

-atan(x/sqrt(-1/a**2))**2/(2*a) - log(sqrt(-a*x + 1)/sqrt(a*x + 1))*atan(x/sqrt(-1/a**2))/(a**2*sqrt(-1/a**2))

________________________________________________________________________________________